259 research outputs found

    Optimization of friction stir welding tool advance speed via Monte-Carlo simulation of the friction stir welding process

    Get PDF
    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time

    Robust and efficient meshfree solid thermo-mechanics simulation of friction stir welding

    Get PDF
    Friction stir welding, FSW, is a solid-state joining method that is ideally suited for welding aluminum alloys. Welding of the aluminum is accomplished by way of a hardened steel tool that rotates and is pushed with great force into the work pieces. Friction between the tool and the aluminum causes heat to be generated, which softens the aluminum, rendering it easy to deform plastically. In recent years, the FSW process has steadily gained interest in various fabrication industries. However, wide spread acceptance has not yet been attained. Some of the main reasons for this are due to the complexity of the process and the capital cost to procure the required welding equipment and infrastructure. To date, little attention has been paid towards finding optimal process parameters that will increase the economic viability of the FSW process, thus offsetting the high initial investment most. In this research project, a robust and efficient numerical simulation code called SPHriction-3D is developed that can be used to find optimal FSW process parameters. The numerical method is meshfree, allowing for all of the phases of the FSW process to be simulated with a phenomenological approach. The dissertation starts with a focus on the current state of art. Next an in-depth development of the proposed meshfree formulation is presented. Then, the emphasis turns towards the presentation of various test cases along with experimental validation (the focus is on temperature, defects, and tool forces). The remainder of the thesis is dedicated to the development of a robust approach to find the optimal weld quality, and the associated tool rpm and advancing speed. The presented results are of engineering precision and are obtained with low calculation times (hours as opposed to days or weeks). This is possible, since the meshfree code is developed to run in parallel entirely on the GPU. The overall outcome is a cutting edge simulation approach for the entire FSW process. Le soudage par friction malaxage, SFM, est une méthode idéale pour relier ensemble des pièces en aluminium. Lors du procédé, un outil en acier très dur tourne à haute vitesse et est presser dans les plaques avec beaucoup de force. L’outil frotte sur les plaques et génère la chaleur, ce qui ramollie l’aluminium, ceci le rendant plus facile à déformé mécaniquement. Récemment, le SFM a connu une croissance de reconnaissance important, par contre, l’industrie ne l’as pas encore adopté unilatéralement. Il existe encore beaucoup de terrain à défricher avant de bien comprendre comment les paramètres du procédé font effet sur la qualité de la soudure. Dans ce travail, on présente une approche de simulation numérique sans maillage pour le SFM. Le code développé est capable de prendre en considération des grandes déformations plastiques, le ramollissement de l’aluminium avec la température, et la condition de frottement complexe. Cette méthode permet de simulé tous les phases du procédé SFM dans une seule modèle. La thèse commence avec un mis en contexte de l’état actuel de la simulation numérique du SFM. Une fois la méthodologie de simulation sans maillage présenté, la thèse concentre sur différents cas de vérification et validation. Finalement, un travail d’optimisation des paramètres du procédé est réalisé avec le code numérique. La méthode de simulation présentée s’agit d’une approche efficace et robuste, ce qui le rend un outil de conception valable pour les ingénieurs qui travaille dans le domaine de SFM

    Hybrid Thermo-Mechanical Contact Algorithm for 3D SPH-FEM Multi-Physics Simulations

    Get PDF
    Numerical simulation of complex industrial processes has become increasingly ommon in recent years. Depending on the nature of the industrial application, multiple types of physical phenomena may need to be considered as well as the interaction of multiple disjoint bodies. This paper is focused on industrial applications with large plastic deformation. Such processes are typically not well treated by finite element (FE) methods. For this reason, the smoothed particle hydrodynamics method (SPH) is used. In this work, we introduce a robust and straightforward thermo-mechanical contact algorithm for multi-physics SPH simulations in 3D

    How to Minimize the Attack Rate during Multiple Influenza Outbreaks in a Heterogeneous Population

    Get PDF
    <div><h3>Background</h3><p>If repeated interventions against multiple outbreaks are not feasible, there is an optimal level of control during the first outbreak. Any control measures above that optimal level will lead to an outcome that may be as sub-optimal as that achieved by an intervention that is too weak. We studied this scenario in more detail.</p> <h3>Method</h3><p>An age-stratified ordinary-differential-equation model was constructed to study infectious disease outbreaks and control in a population made up of two groups, adults and children. The model was parameterized using influenza as an example. This model was used to simulate two consecutive outbreaks of the same infectious disease, with an intervention applied only during the first outbreak, and to study how cumulative attack rates were influenced by population composition, strength of inter-group transmission, and different ways of triggering and implementing the interventions. We assumed that recovered individuals are fully immune and the intervention does not confer immunity.</p> <h3>Results/Conclusion</h3><p>The optimal intervention depended on coupling between the two population sub-groups, the length, strength and timing of the intervention, and the population composition. Population heterogeneity affected intervention strategies only for very low cross-transmission between groups. At more realistic values, coupling between the groups led to synchronization of outbreaks and therefore intervention strategies that were optimal in reducing the attack rates for each subgroup and the population overall coincided. For a sustained intervention of low efficacy, early intervention was found to be best, while at high efficacies, a delayed start was better. For short interventions, a delayed start was always advantageous, independent of the intervention efficacy. For most scenarios, starting the intervention after a certain cumulative proportion of children were infected seemed more robust in achieving close to optimal outcomes compared to a strategy that used a specified duration after an outbreak’s beginning as the trigger.</p> </div

    The African Genome Variation Project shapes medical genetics in Africa.

    Get PDF
    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Tracking Cats: Problems with Placing Feline Carnivores on δ18O, δD Isoscapes

    Get PDF
    Several felids are endangered and threatened by the illegal wildlife trade. Establishing geographic origin of tissues of endangered species is thus crucial for wildlife crime investigations and effective conservation strategies. As shown in other species, stable isotope analysis of hydrogen and oxygen in hair (δD(h), δ(18)O(h)) can be used as a tool for provenance determination. However, reliably predicting the spatial distribution of δD(h) and δ(18)O(h) requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid hair.We used coupled δD(h) and δ(18)O(h) measurements from the North American bobcat (Lynx rufus) and puma (Puma concolor) with precipitation-based assignment isoscapes to test the feasibility of isotopic geo-location of felidae. Hairs of felid and rabbit museum specimens from 75 sites across the United States and Canada were analyzed. Bobcat and puma lacked a significant correlation between H/O isotopes in hair and local waters, and also exhibited an isotopic decoupling of δ(18)O(h) and δD(h). Conversely, strong δD and δ(18)O coupling was found for key prey, eastern cottontail rabbit (Sylvilagus floridanus; hair) and white-tailed deer (Odocoileus virginianus; collagen, bone phosphate).Puma and bobcat hairs do not adhere to expected pattern of H and O isotopic variation predicted by precipitation isoscapes for North America. Thus, using bulk hair, felids cannot be placed on δ(18)O and δD isoscapes for use in forensic investigations. The effective application of isotopes to trace the provenance of feline carnivores is likely compromised by major controls of their diet, physiology and metabolism on hair δ(18)O and δD related to body water budgets. Controlled feeding experiments, combined with single amino acid isotope analysis of diets and hair, are needed to reveal mechanisms and physiological traits explaining why felid hair does not follow isotopic patterns demonstrated in many other taxa

    Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments

    Get PDF
    The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, similar to 70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHe(corr)-0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available
    corecore